Status and Opportunities for Phosphorescent OLED Technology

COLOR IS UNIVERSAL

December 2016

UDC Company Focus

IP innovator, technology developer, patent licensor and materials supplier for the rapidly growing OLED markets

OUR COMPANY

- Global University Sponsored Research Programs
- Multi-disciplinary Chemistry Organization
 - Discovery (Experimental and Computational)
 - Applied Research synthesis & process dev.
 - Commercial Development
 - Volume Production
- Broad Physics and Engineering Organization
 - Discovery (Failure Mechanisms)
 - Device Research

OLOR IS UNIVERSAL

- Device Engineering
- Processing Engineering
- Business Localization and Support
 - UDC Korea, Japan, Taiwan and China teams

universal display corporation

In The Beginning...not very long ago

OLED Timeline

Source: Acuity Brands.

MORE OLED PRODUCTS

Elegant Simplicity of an OLED

- An Organic Light Emitting Diode is a series of organic thin films between two conductors
- When electrical current is applied, bright light is emitted
- OLEDs can be used for displays and lighting
- OLEDs are not just thin and efficient they can also be made *flexible* and *transparent*

AMOLED versus AMLCD – Display Modules

AMOLED versus AMLCD – Display Modules

✓ Lower BOM (bill of materials)
 ✓ Better Performance, More Efficient
 ✓ Thinner and Flexible Form Factor
 ✓ Vivid Colors and Superior Contrast Ratio

Image source: LG

Why AMOLEDs for Mobile Devices?

SS Kim, SMD, SID 2010

Fundamentally simpler structure than LCDs - AMOLEDs are thinner and lighter

Better display performance compared to LCDs - Simply, AMOLEDs look better and are more attractive!

Why OLED TVs

AMOLED Display Power Efficiency

UNIVERSAL DISPLAY CORPORATION

OLED Displays vs OLED lighting

	Displays	Lighting	
Maturity	Many small sized commercial products, tablets, notebooks and 55" -77" TV available	Early entry commercial products	
TFT Backplane	Challenging – major yield limitation and high capital cost for manufacturing plant	TFTs are not needed	
Full color patterning	Issue for large size substrates	N/A	
Blue requirement	Need high performance, deep saturated blue	Warm whites require less deep blue than displays	
Cost	BOM costs soon to be lower than AMLCD	Major challenge, but \$25 per klumen now possible in 2018	
New Form Factors	Thin, lightweight, rugged, transparent,	Thin, lightweight, rugged, transparent, arbitrary shapes	
OLOR IS UNIVERSAL		UNIVERSAL DISPLAY CORPORATION	

Strong OLED Display Market Drivers

Lower Power Usage

- RED Phosphorescence reduces power consumption by 25%
- Add GREEN: 45% cumulative reduction
- Add BLUE: 74% cumulative reduction
- Enabled by PHOLEDs

Superior Aesthetics

- Improved image quality
- Thinner form factor
- 180 degree viewing angle
- 1,000,000 : 1 contrast ratio – TRUE BLACK
- Real-time video speeds– excellent for 3D
- Self-emissive display
- On cell touch without sacrificing fill factor
- Low UV output
- Flexible

More Cost Effective

- Fewer manufacturing process steps
- Low cost bill-of-materials
 - No backlight required
 - No color filter required
 - No liquid crystal required
 - Reduced driver IC costs
- Enables non-glass substrates

OLED Market Expansion

COLOR IS UNIVERSAL

Power consumption PHOLED Materials integration Device and panel architecture

Lifetime

Materials integration Device and panel architecture Encapsulation

Manufacturability

Low Cost Vacuum thermal evaporation Solution and vapor printing

Form factor

Flexible

Unbreakable

Thin film barrier

How Will Flexible Lighting and Displays Develop?

Challenges of Plastic AMOLED

Key Challenges: 1) TFT Same as On-Glass

Courtesy: HK Chung

2) Low Cost Thin Film Encapsulation

3) Compatible with Existing Fab

Paths to Increase OLED Market – Form Factor

Impact:

- Lower cost more displays per sheet and no dessicant or sealant
- Single layer enables very narrow bezel
- Enables flexible devices game changer!!!

The Introduction of "Curved Phones"

LG G Flex

1.00

Future Growth: Flexible

Unbreakable

Thinner

New Form Factors

Lighter

The Universal Communication Device (UCD)

Changing the way you view the world!

OLED Products for Wearable Applications

- Ideal display and lighting technology for wearable applications
- Thin, light and flexible (but needs encapsulation)
- Energy efficient only uses power when visible
- Cool in operation no heat sink required
- Low blue content does not impact sleep

OVJP - Organic Vapor Jet Printing

Organic Vapor Jet Printing

OVJP: Printing with gas 'solvent'

First Printed Lines at UDC Pilot Line

Moving to higher resolution: needs and considerations

> Industry needs:

- Lower cost solution for pixel patterning
- New architectures for v. high resolution and longer LT
- > Design considerations:
 - Avoid high resolution OLED patterning
 - Improve display LT
 - \circ maximize pixel fill-factor/maximize blue display LT
 - No power penalty
 - Can implement in bottom or top emission
 - Lower OLED manufacturing cost

Proposed new: 'BYcolor' architecture

Novel BY Display Architecture

- Combining the best of shadow mask patterning and color filter technology
- High performance
 - Large blue (and yellow) pixels maximize display lifetime and efficiency
 - Separate color filters only for red and green
- Low cost
 - Can be used for large area substrates mobile displays and TVs
 - Shadow mask can be sturdier only half the resolution of the display

Applying SPR(Spatial Resolution) to BY color Architecture

OLED Lighting

- Energy efficient environmentally friendly
 - Low drive voltage
 - Low operating temperatures, cool to touch
 - Long lifetime
 - Easy to control
- Highly desirable color quality
 - Wide range of CCT, high CRI possible
 - Color tunable
 - Instant "ON", Dimmable without flicker
 - No glare, no noise
 - Low UV content
- Novel form factor
 - Thin and lightweight surface lighting
 - Transparent
 - Non-breakable, Flexible, Rollable.....
- Low cost potential
 - Scaling advantage roll to roll process

OLED Lighting Around the World

.umiotec

CuityBrands.

*Now available @

TOSHIBA Leading Innovation >>>

2015 OLED Panel Performance Specs

Panels from LG Chem: PHOLED Technology from UDC

TODAY

ССТ	3000K / 3500K / 4000K			
Color Consistency	<u>+</u> 2 MacAdam			
Luminance	2000-3000 cd/m ²			
<u>L70</u> 3000K 3500K / 4000K	40K hrs @ 3000 cd/m²; 72K hrs @2000 cd/m² 30K hrs @ 3000 cd/m²; 54K hrs @2000 cd/m²			
	HIGH CRI	STANDARD CRI		
Efficacy	55 - 60 lm/W	80 lm/W		
CRI	85-90	80		
R9	24-41	> 0		

COLOR IS UNIVERSAL

From Acuity Brands

Pixel Efficacy: Status & Targets

Pixel Efficacy \propto LER x IQE x OC x EEF

- LER = Luminous Efficacy of Radiation (= Max efficacy of emission spectra)
- IQE = Internal Quantum Efficiency
- OC = Outcoupling Efficiency
- EEF = Electrical Efficiency Factor (= Optical Energy Gap Applied Voltage)

	Target and Practical Limit	
LER [Im/W]	350	
IQE [%]	95%	
OC [%]	60%	
EEF [%]	90%	
Pixel Efficacy [Im/W]	180 (at 3,000 cd/m ²)	

> White PHOLEDs already emit with IQE \approx 100% at low luminance. Challenge is to maintain IQE \approx 95% at 3,000 cd/m².

UDC White OLED Pixel Efficacy Target = 180 lm/W

OLED and **LED** Lighting – Living Together

2015 DOE Roadmap for OLED Lighting

Table 6.3 Breakdown of OLED Luminaire Efficiency Projections

Metric	2014	2017	2020	Goal
Panel Efficacy ¹ (Im/W)	60	125	160	190
Optical Efficiency of Luminaire	100%	100%	90%	90%
Efficiency of Driver	85%	85%	90%	95%
Total Efficiency from Device to Luminaire	85%	85%	81%	86%
Resulting Luminaire Efficacy ¹ (Im/W)	51	106	130	162

Notes:

1 Efficacy projections assume CRI >80, CCT 3000 K

US Department of Energy – OLED Cost Roadmap

Manufacturing Roadmap

Solid-State Lighting Research and Development

Prepared for the U.S. Department of Energy

August 2014

Prepared by Bardsley Consulting, Navigant Consulting, SB Consulting, and SSLS, Inc.

Table 1.6 OLED Panel Cost Estimated Progress (\$/m²)

	2013	2014	2016	2020	2025
Integrated Substrate	250	200	150	40	20
Organic Deposition	600	500	250	70	30
Assembly and Test	350	300	200	50	20
Overhead ^d	300	200	100	20	10
Total (unyielded)	1,500	1,200	700	180	80
Yield of Good Product (%)	25	40	70	75	80
Total Cost	6,000	3,000	1,000	240	100

Flexible OLED Lighting

Conventional Lighting

Flexible OLED Lighting

Courtesy: HK Chung

\prec UNIVERSAL DISPLAY CORPORATION

Novel Form Factor – flexible & rugged

Safety Clothing by GE (concept)

COLOR IS UNIVERSAL

UNIVERSAL DISPLAY CORPORATION

OLED Lighting – Entering the Mass market

Application of Tunable OLED Luminaires

ScuityBrands. Expanding the houndaries of lighting"

Application of OLED Luminaires

OLED luminaires can be used in:

•Retail stores

•Offices

- Hospitals
- •Galleries
- •Supermarkets

SecurityBrands. Expanding the boundaries of lighting"

Application of OLED Luminaires

The luminaires can be used in:

Retail stores
Offices
Hospitals
Galleries
Supermarkets

ScuityBrands. Expanding the boundaries of lighting"

CCT=4,000K

CCT=3,500K

CCT=2,700K

Energy Savings Potential in 2020

DOE analysis compares corridor lighting scenarios

Traditional design with fluorescent troffers

OLED design with vertical and pendants

COMPARED TO TRADITIONAL LIGHTING DESIGNS, USING OLEDS IN CORRIDORS COULD SAVE ...

Luminaire with Color Tunable WOLED Panels

ScuityBrands. Expanding the boundaries of lighting"

> 32x 6" x 6" panel PHOLED Luminaire •

Automobile Applications for OLED Lighting

Source: BMW

Audi

- > OLEDs offer the ability to create shapes of any size
- OLEDs provide extremely uniform light

Thank you.